72 research outputs found

    Prediction of the Fracture Location by Tensile Tests of Gray Cast Iron Based on the Dimensional Changes of Graphite Flakes

    Get PDF
    Gray cast iron has been used as a component in various mechanical parts, such as the blocks and heads of automobile and marine engines, cylinder liners for internal combustion engines, and machine tool bases. It is desirable because of its good castability and machinability, damping characteristics, and high performance-to-cost ratio. On the other hand, weak graphite flakes present in gray cast iron serve as stress concentrators and adversely affect the material strength. Therefore, it is crucial to examine the relationship between the distribution of graphite flakes and the strength or fracture of gray cast iron. In this study, tensile tests on gray cast iron were carried out using a plate specimen and observed by scanning electron microscopy, and the microscopic deformation was observed on the specimen surface. Particularly, the change in the size of graphite flakes during the tensile tests was examined, and the observed trend was discussed. The experimental results reveal that the dimensional changes in the graphite flakes vary in the observed area and that the final fracture occurs in an area where a large dimensional change is observed, suggesting that the fracture location or critical parts of gray cast iron can be predicted from the dimensional changes of the graphite flakes at an early stage of deformation

    Observation of Orientation Change During Plastic Deformation of Polycrystalline Copper by EBSD Method

    Get PDF
    Change in crystal orientation and strain of individual grains during tensile plastic deformation are studied to clarify on the microscopic deformation behavior of polycrystalline copper. The orientation of grain is measured by electron backscatter diffraction (EBSD) technique in the scanning electron microscope. The principal strain of grain is also measured by obtaining the approximated ellipse of strain distribution. The deformation of grains dependent on their initial orientation and the rotation of the principal strain during uniaxial tension are clarified

    Microscopic Observation of Tensile Deformation Behavior of Polycrystalline Titanium with Scanning Probe Microscope

    Get PDF
    The change in the surface morphology of polycrystalline titanium during tensile plastic deformation is studied, using the scanning probe microscope as well as the laser scanning microscope. The observation shows that the slip occurs mainly near grain boundary at the strain range of ε < 0.05. The slip develops with the applied strain, and the slip on the second slip system or the crossing of slip lines appear. The surface roughness increases linearly with the applied strain. The height difference between the grain boundary area and the inner grain area also increases with the applied strain, though the increase rate becomes low after the applied strain of about 0.3. The nano-scale height difference of the surface step of slip lines increases with the applied strain, though it remains almost constant after the applied strain of 0.4. The averaged surface roughness measured with the scanning probe microscope is in good agreement with that measured with the laser scanning microscope

    Microscopic Surface Change of Polycrystalline Aluminum duringTensile Plastic Deformation

    Get PDF
    Roughening on free surface of polycrystalline metal during plastic deformation is closely related to the inhomogeneous deformation in the respective grain at the surface. Uniaxial tensile tests are carried out on annealed pure aluminum sheet specimens with various averaged grain sizes. The roughening is measured by a 3-dimensional stylus instrument to examine the roughness change in both sides of specimen surfaces at each strain. The irregularities on one side are reversed on the backside, when the averaged grain size is as large as the thickness of the specimen. Discussions are made on the relation between the surface shapes of both sides adopting the cross correlation factor. The strains of respective grains are also measured from the grain boundary shape before and after plastic deformation. There are some deviations in the strains of the grains and their standard deviation increases with the applied strain

    Finite Element Study of the Effect of Internal Cracks on Surface Profile Change due to Low Loading of Turbine Blade

    Get PDF
    Turbine blades for thermal power plants are exposed to severe environments, making it necessary to ensure safety against damage, such as crack formation. A previous method detected internal cracks by applying a small load to a target member. Changes in the surface properties of the material were detected before and after the load using a digital holographic microscope and a digital height correlation method. In this study, this technique was applied in combination with finite element analysis using a 2D and 3D model simulating the turbine blades. Analysis clarified that the change in the surface properties under a small load varied according to the presence or absence of a crack, and elucidated the strain distribution that caused the difference in the change. In addition, analyses of the 2D model considering the material anisotropy and thermal barrier coating were conducted. The difference in the change in the surface properties and strain distribution according to the presence or absence of cracks was elucidated. The difference in the change in the top surface height distribution of the materials with and without a crack was directly proportional to the crack length. As the value was large with respect to the vertical resolution of 0.2 nm of the digital holographic microscope, the change could be detected by the microscope

    Application of Electrical Resistivity Imaging for Measuring Water Content Distribution on Hillslopes

    Get PDF
    Electrical resistivity imaging (ERI) as a method for effectively evaluating soil water content distribution on natural hillslopes was validated by combining ERI technique with the invasive measurement of volumetric water content (θ) using a combined penetrometermoisture probe (CPMP) on a hillslope in a head-water catchment underlain by weathered granite porphyry. There was a reasonable correlation (R2= 0.54) between θ and electrical resistivity (ρ). The correlation between (θ and ρ measured on two natural hillslopes in a head-water catchment underlain by weathered granite in our previous studies was also analyzed, and there was some reasonable correlation (R2= 0.33 to 0.53) between θ and ρ within each slope, indicating the potential of ERI for quantitatively evaluating moisture conditions within soil layers of natural hillslopes based on field-scale calibrations with invasive methods. These θ-ρ datasets were roughly consistent with a common fitted functionalmodel (Archie’s equation) (R2= 0.37), indicating the possibility of quantitatively evaluating θ of soil layer on natural hillslopes using ERI without directly measuring θ using any invasive method, although results still showed the importance of combining invasive methods with ERI and obtaining sitespecified θ-ρ correlation models for providing a more accurate spatial distribution of θ within the soil mantle. Inconsistencies between θ and ρ within datasets may be significantly attributable to not only limitations on spatial resolution of ERI technique related to the issue of representative volumes of the technique and inversion analysis to obtain ρ profiles but also the assumption that soil properties and pore-water resistivity of the entire slope are homogeneous. Using a CPMP as invasive method, detecting heterogeneous θ distribution more accurately than ERI technique, together with ERI is one of the most reasonable ways of effectively quantifying soil water content distribution on natural hillslopes

    Effect of Lubrication and Forging Load on Surface Roughness, Residual Stress, and Deformation of Cold Forging Tools

    Get PDF
    Cold forging is a metal forming that which uses localized compressive force at room temperature. During the cold forging process, the tool is subjected to extremely high loads and abrasive wear. Lubrication plays an important role in cold forging to improve product quality and tool life by preventing direct metallic contact. Surface roughness and residual stress also greatly affects the service life of a tool. In this study, variations in surface roughness, residual stress, and specimen deformation with the number of cold forging cycles were investigated under different forging conditions. Specimens that were made of heat-treated SKH51 (59-61 HRC), a high-speed tool steel with a polished working surface, were used. The specimens were subjected to an upsetting process. Compressive residual stress, surface roughness, and specimen deformation showed a positive relationship with the number of forging cycles up to a certain limit and became almost constant in most of the forging conditions. A larger change in residual stress and surface roughness was observed at the center of the specimens in all the forging conditions. The effect of the magnitude of the forging load on the above discussed parameters is large when compared to the effect of the lubrication conditions

    Bifunctionality of Rh3+ Modifier on TiO2 and Working Mechanism of Rh3+/TiO2 Photocatalyst under Irradiation of Visible Light

    Get PDF
    A rhodium(III) ion (Rh3+)-modified TiO2 (Rh3+/TiO2) photocatalyst, prepared by a simple adsorption method and exhibiting high levels of photocatalytic activity in degradation of organic compounds, was investigated by using X-ray absorption fine structure (XAFS) measurements, (photo)electrochemical measurements, double-beam photoacoustic (DB-PA) spectroscopic measurements, and photoluminescence measurements. Based on the results, the features of the Rh3+ modifier and the working mechanism of the Rh3+/TiO2 photocatalyst are discussed. XAFS measurements revealed that the Rh3+ species were highly dispersed and almost atomically isolated on TiO2. The (photo)electrochemical measurements, DB-PA spectroscopic measurements, and photoluminescence showed a unique bifunction of the Rh3+ modifier as a promoter for O2 reductions and an electron injector to the conduction band of TiO2 for response to visible light. The reasons for the Rh3+/TiO2 photocatalyst exhibiting higher levels of photocatalytic activity than those of TiO2 photocatalysts modified with other metal ions are also discussed on the basis of obtained results
    corecore